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ABSTRACT 
 This paper presents a novel completely scaling-free CORDIC algorithm in rotation mode for hyperbolic 
trajectory. We use most-significant-1 bit detection technique for micro-rotation sequence generation to reduce the 
number of iterations. By storing the sinh/cosh hyperbolic values at octant boundaries in a ROM, we can extend the 
range of convergence to the entire coordinate space. Based on this, we propose a pipeline hyperbolic CORDIC 
processor to implement a direct digital synthesizer (DDS). The DDS is further used to derive an efficient arbitrary 
waveform generator (AWG), where a pseudo-random number generator modulates the linear increments of phase to 
produce random phase-modulated waveform. The proposed waveform generator requires only one DDS for 
generating variety of modulated waveforms, while existing designs require separate DDS units for different type of 
waveforms, and multiple DDS units are required to generate composite waveforms. Therefore, area complexity of 
existing designs gets multiplied with the number of different types waveforms they generate, while in case of 
proposed design that remains unchanged. The proposed AWG when mapped on Xilinx Spartan 2E device, consumes 
1076 slices and 2016 4-input LUTs. The proposed AWG involves significantly less area and lower latency, with 
nearly the same throughput compared to the existing CORDIC-based designs. 
 
Index Terms—Direct digital synthesis, scale-free CORDIC, sigmoid functions, waveform generator. 
 
 
 
 
1. INTRODUCTION 
 SIGNAL generators [1] are an important part 
in designing, testing and troubleshooting of various 
electronic systems. Arbitrary and non-linear 
waveforms of various forms are required in research 
and development to provide the necessary stimuli to 
the device under test (DUT). Normally, arbitrary 
waveform generators (AWGs) are combined with 
conventional function generators which include various 
predefined functions like sine, ramp, triangle, 
compound sinusoidal waveforms, exponentials, etc. 
The waveforms related to sinusoids are generated using 

circular trigonometry, whereas, the exponential or 
hyperbolic waveforms are generated using hyperbolic 
Manuscript received December 23, 2011; revised 
March 11, 2012; accepted April 04, 2012. Date of 
publication September 28, 2012; date of current 
version January 24, 2013. This paper was 
recommended  Color versions of one or more of the 
figures in this paper are available online at 
http://ieeexplore.ieee.org. Digital Object Identifier 
10.1109/TCSI.2012.2215778 trigonometry. For proper 
testing it is necessary that the AWGs produce accurate 
and predictable waveforms. There are several methods 
of arbitrary waveform generation. The look-up-table 
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(LUT) approach is the simplest of those, but its area 
complexity is huge owing to large memory 
requirements. Typically, with a modest frequency 
resolution of 200 Hz, the AWG requires more than 
words in LUT for a maximum frequency of 100 MHz 
[2]. Moreover, the memory requirement increases 
linearly with the improvement of frequency resolution 
or the increase of maximum frequency. To overcome 
this disadvantage of LUT-based AWG, direct digital 
synthesizers (DDS) have gained preference for 
realizing high-frequency signal-generators with good 
frequency resolution. To generate composite 
waveforms, the outputs of various DDS units running 
at different frequencies are required to be added 
together [3]. Therefore, to increase the arbitrariness of 
the generated amplitudes, more number of DDS are 
required to be used in the AWG. But, the hardware cost 
of AWG increases linearly with the number of DDS 
units used in it. In [4], a technique based on Chebyshev 
polynomials is used for generating composite and 
arbitrary waveforms. It approximates a given 
waveform pattern using Chebyshev polynomials, and 
realizes a circuit for generating it repetitively using 
multipliers and adders. This paper considers realizing a 
waveform generator using CORDIC based DDS 
architecture. Instead of using conventional DDS, where 
phase is mapped to sinusoidal amplitude; in this paper, 
we propose to map the phase to cosine hyperbolic 
amplitude. As a result, we can obtain large variations in 
amplitude without amplitude scaling. In the proposed 
design, the arbitrary amplitude variations occur due to 
random phase modulation of the DDS. Unlike the 
existing techniques, the proposed technique requires 
only one DDS for generating various 
modulated/arbitrary waveforms. Hyperbolic modulated 
waveforms have a unique property of Doppler-shift 
invariance and therefore, have gained importance in the 
field of radar/sonar communications [5], [6]. The 
proposed AWG can be used for testing of these 
circuits. The waveforms generated by the proposed 
AWG have large number of frequency components, so 
it can serve as stimuli to test frequency selectivity of 
devices. 
 
 Apart from this, it can also also be used as a 
digital pattern generator. CORDIC architectures have 
been successfully employed for waveform generation 
[7], [8], implementation of digital filters [9], transform 
computation [10], [11], matrix calculations [12] etc. In 
spite of its simplicity and low computational 
complexity, CORDIC algorithm suffers from major 
bottlenecks like either high latency or large overheads 
of scale-factor compensation, when an optimized set of 
micro-rotations are used to reduce the latency. Parallel 
CORDIC architectures have been suggested in [13] and 
[14] to reduce the latency but at the cost of additional 

hardware and time to implement the scale-factor 
compensation. The redundant iterations are eliminated 
by greedy search in [15]–[17], but the hardware 
savings achieved by this approach are counter-balanced 
by variable scale-factor compensation circuits. Various 
scale-factor compensating techniques have been 
suggested in the literature [18]–[20], but these 
techniques either lead to large area overheads or 
otherwise affect throughput or latency. The Taylor 
series expansion offers a low complexity solution for 
the design of scale-free CORDIC. Scaling-Free 
CORDIC [21]–[23] indemnify the scale-factor 
limitations to certain extent. Various optimization 
efforts in the above CORDIC algorithms are targeted 
for circular CORDIC, while hyperbolic CORDIC still 
needs to be explored for improvements. 
 
 The number of efficient CORDIC designs for 
hyperbolic trajectory is far less as compared to circular 
trajectory regardless, inspite of its wide scope in 
artificial neural networks [24]–[26], adaptive filtering 
[27] and for computing logarithm and exponential 
functions [28]. In [29], the authors improve the range 
of convergence of conventional CORDIC algorithm 
in hyperbolic trajectory by using additional iterations 
which allow negative iteration indices as well. Though 
it increases the RoC of the hyperbolic CORDIC 
algorithm, it significantly adds to the latency of the 
processor. 
 
 Themain contributions of this paper are: (i) a 
novel scale-free design of hyperbolic CORDIC1 using 
optimized micro-rotation sequence with improved 
RoC, (ii) a DDS using the proposed scale-free 
hyperbolic CORDIC processor for generating 
hyperbolic/ exponential waveforms, and (iii) a novel 
scheme of random phase modulation for generation of 
arbitrary waveforms. The rest of the paper is organized 
as follows. An overview of CORDIC algorithm is 
presented in Section.  II. The proposed technique for 
the design of scale-free hyperbolic CORDIC is 
discussed in Section III. Section IV deals with the 
optimization of the micro-rotation sequence, while 
Section V deals with convergence- range of the 
proposed CORDIC algorithm. Section VI  details the 
error analysis of the proposed methodology. The 
design of DDS and the waveform generator based on 
the proposed scale-free hyperbolic CORDIC are 
described in Section VII. FPGA implementation and 
complexity issues are discussed in Section VIII with a 
brief conclusion in Section IX. 
 
2. CORDIC ALGORITHM 
 The CORDIC algorithm operates either in 
rotation or vectoring mode, following linear, circular or 
hyperbolic trajectories. The circular CORDIC 



Scale-Free Hyperbolic Cordic Processor and Its Application To Waveform Generation 
 

145 | P a g e  

algorithm is used for computation of sin/cos, vector 
rotations etc., while hyperbolic CORDIC is used for 
calculating exponents, sinh/cosh etc. In this paper, we 
focus on rotation mode of CORDIC operation using 
hyperbolic trajectory. 1The proposed hyperbolic 
CORDIC works in rotation mode only. It does not 
support vectoring mode of CORDIC. 
 
A. Unified CORDIC Algorithm 
 The unified CORDIC algorithm [30] is an 
extension to the basic CORDIC algorithm of Volder 
[31]. The generalized principle was proposed 
byWalther to include, hyperbolic and linear trajectory 
along with the original circular trajectory of operation. 
A variable for defining the trajectory was introduced 
to modify the basic CORDIC rotation matrix and 
elementary angle as: 

 
 
 To guarantee convergence in hyperbolic 
mode, the iterations , 13, 40 need to be executed twice. 
Consequently, the scale factor converges to a constant . 
The CORDIC algorithm in hyperbolic rotation mode 
can support a RoC of . 
 
B. Review of Scaling-Free CORDIC 
 The Scaling-Free CORDIC [21] is a milestone 
in development of optimized implementation of 
CORDIC algorithm. It lays the foundation for using the 
Taylor series approximation in CORDIC rotation 
matrix for deriving the scale-free equations. It employs 
second order Taylor series approximation. Though 
originally designed for circular CORDIC applications, 
it needs a brief mention as, it discusses the implications 
of Taylor series approximation on RoC and the 
permissible highest elementary angle that could be 
used for realizing CORDIC rotations. The rotation 
matrix for Scaling-Free CORDIC is given as: (3) 
 
 This approximation imposes a restriction on 
the basic-shift2 . For 16-bit applications, the basic-shift 
is, which reduces the ROC to 7.16 . This was a major 

drawback, which limits the applicability of this 
algorithm. Moreover, this algorithm focuses only on 
circular rotation mode, and cannot be directly extended 
to hyperbolic CORDIC. The second order of 
approximation of Taylor series expansion of hyperbolic 
functions would lead to a very low range of 
convergence of 7.16 . Due to absence of any kind of 
symmetry in hyperbolic functions one cannot expand 
the RoC, as is done in [21] to expand the RoC of 
circular trigonometric functions. 2Theminimum 
possible permissible shifts in the CORDIC iteration 
have been termed as basic shift, which is equal to the 
number of right shifts in the first CORDIC iteration. 
 
3. PROPOSED SCALING-FREE HYPERBOLIC 
CORDIC 
 The main steps in the design of the proposed 
scaling-free hyperbolic CORDIC with enhanced range 
of convergence (RoC) are: (i) Modification of the 
unified CORDIC coordinate equations using Taylor 
series approximation of hyperbolic terms to derive 
scale-free CORDIC equations3; (ii) Determination of 
the sequence of micro-rotations based on the most-
significant-1 location in the radix-2 representation of 
the rotation angle, and also restricting the micro-
rotations in single direction; and (iii) Formulation of 
necessary mathematical relations to increase the RoC 
of the unified CORDIC algorithm. 
 
 In this section, we elaborate the proposed 
scale-free coordinate calculation unit, while the micro-
rotation sequence generation is detailed in the next 
section. To derive a scale-free rotation matrix for 
hyperbolic coordinate computations, we use the 
hyperbolic rotation matrix in the form: 
 

 
 
 Using Taylor series expansion of sinh and 
cosh terms in the rotation matrix (4) can get rid of the 
scale-factor of the rotation matrix (2) for the unified 
CORDIC algorithm. 
 
A. Taylor Series Approximation 
 The Taylor series expansions of the 
hyperbolic functions are given by: 

 
 For hardware implementation the above 
expansions need to be approximated, with acceptable 



Scale-Free Hyperbolic Cordic Processor and Its Application To Waveform Generation 
 

146 | P a g e  

compromise in accuracy. Also, the Taylor series 
approximations employed in the CORDIC rotation 
matrix affect the RoC, as it restricts the basic-shift 
(Appendix A (28b)). However, we find that the 
increase in the approximation order increases the RoC 
by decreasing the basic-shift. But at the same time, it 
adds to the hardware complexity as additional terms 
are included in the implementation. Therefore, 
depending on the accuracy requirements and desired 
RoC, we need to select an appropriate order of 
approximation. 
 
 To decide the approximation order of the 
Taylor series to be used in CORDIC rotation matrix, 
we analyze various orders of approximation depending 
on the accuracy associated with each order. In Fig. 1(a) 
and Fig. 1(b) we have plotted sinh and cosh values for 
different orders of approximation of Taylor series 
respectively, for angles lying in the range . From Fig. 1 
we see that, the original and approximated values are 
indistinguishable for sinh and cosh function up to , 
which covers the range of CORDIC elementary angles 
of . Themaximum percentage error in sinh and cosh 
values for third order of approximation is 0.00322% 
and 0.0158%, respectively. Therefore, 3The order of 
approximation of Taylor series plays a significant role 
in deciding the RoC of the CORDIC processor. 

 
 
Figure. 1. Comparison of hyperbolic functions and 

Taylor series approximation. 

(a) Comparison of sinh function and its Taylor series 
approximation;  
(b) comparison of cosh function and its Taylor series 
approximation. we can safely select third order of 
approximation for Taylor series expansion of sinh and 
cosh terms to realize CORDIC rotations in hyperbolic 
rotation mode applicable for most practical 
applications. 
 
B. Realizing CORDIC Iterations Using Taylor Series 
 To analyze the errors for CORDIC coordinate 
equations, we simulate the CORDIC rotator for various 
approximation orders of Taylor series. We realize the 
CORDIC processor for the following rotation matrices 
(derived by using various orders of approximation of 
Taylor series (5) in (4)): 
 

 
 

 Other higher order approximations are not 
considered as they only add to the hardware 
complexity with no benefit in terms of desired 
accuracy. Fig. 2 plots the error in the vector end-point 
for the rotation matrices in (6), with respect to the 
MATLAB inbuilt functions. For the vector. 
 

 
Figure. 2. Absolute error in vector end-point using (6) 
to determine order of approximation. the end-point is 

defined in (7).  
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 The mean square error in the vector end-point, 
over the range of rotation angles , for the four rotation 
matrices (6) is , respectively. The error being small 
enough, we can say that the accuracy benefits are 
insignificant even if we increase the order of 
approximation. The third order of approximation thus 
satisfies our accuracy requirement with minimum 
hardware complexity. Therefore, we choose the third 
order of approximation to design our CORDIC 
processor and take the rotation matrix given by (6a). 
 

 
C. Design of Coordinate Calculation Unit 
 The coefficients of Taylor series in (6a) do not 
allow shift-add implementation of rotationmatrix which 
is a mandatory requirement in CORDIC coordinate 
computations. In order facilitate shift-add 
implementation in the proposed rotation matrix (8), we 
approximate (3!) to . Therefore, the rotation matrix is 
modified to: 
 

 
 
 As the multiplications by power of 2 can be 
realized using left/right shift operations, the rotation 
matrix given by (9) can now be implemented using a 
shift-add network. The mean square error in the vector 
end-point using (9), over the range of convergence is . 
By the proposed approximation of rotation matrix, 
though the magnitude of the error increases slightly, 
the order remains the same. 
 
IV. DECOMPOSITION OF ANGLE OF 
ROTATION INTO MICRO-ROTATIONS 
 In conventional CORDIC, the decomposition 
of angle of rotation is based on following conventions: 
(i) the elementary angles are pre-defined and stored in 
a ROM, (ii) the micro-rotation corresponding to all the 
elementary angles are performed, either  

 
 
 
 
 
 
 
 
 
 

Table I Bit Representation of Elementary Angles And 
Corresponding Shifts 

 
Figure. 3. Functionality of MSO-LI with ‘x’ represent 

don’t care conditions. 
 
 clockwise or anti-clockwise, and (iii) each 
elementary angle is used only once. In the proposed 
scheme, we deviate from all these conventions. 
Themicro-rotations are confined to single direction 
with, multiple iterations corresponding to the basic-
shift and non repetitive iterations for other shifts 
(Appendix B). 
 
A. Redefinition of the Elementary Angles 
 Equation (2) defines the elementary angles 
used in the unified rotation-mode CORDIC algorithm. 
In order to simplify the design and eliminate the ROM 
for storing elementary angles, we redefine the 
elementary angles as: 

 
  
 where is the number of shifts for iteration In 
Table I we list the redefined elementary angles in 
decimal and 16-bit hexadecimal representation and the 
corresponding shifts. 
 
B. Description of Most-Significant-One (MSO) 
Location 
 The most-significant-one (MSO) location 
refers to the bitposition of the leading-one in an input 
string of bits starting from most-significant-bit (MSB). 
The MSO Location Identifier (MSO-LI) generates an -
bit output for a -bit input string, Fig. 3 shows the 
functionality of MSO-LI. From Table I, we observe the 
MSO-LI can be used to determine the number of shifts 
corresponding to the elementary angle using the 
formula: 
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where is the word-length. 
 
C. Determination of Highest Elementary Angle 
 The largest elementary angle depends on the 
order of approximation of Taylor series used to design 
the coordinate calculation unit. Using the formulas in 
Appendix A, the basic-shift and the  

 
largest elementary angle for the third order of 
approximation are 
found to be: 

 
where is the word-length 
For 16-bit word-length, . Depending upon the desired 
accuracy, one can either select or 
. 
D. Determination of Micro-Rotation Sequence 
We express any rotation angle  as: 

 
 where and Note that the total number of 
iterations ‘ ’ is a constant. Depending on the angle of 
rotation we may or may not require iterations 
corresponding to ; for ‘ ’ to be a multiple of and for . 
We propose to identify the micro-rotations based on 
the binary representation of the rotation angles. To 
restrict the complexity of this block, the maximum 
angle of rotation handled by this block is set to be . 
Though the angle of rotation handled by micro-rotation 
sequence generation lies in the range , the RoC can be 
extended to any desired range as detailed in 
the next section. We use 16-bit fixed point binary 
representation, where angle is represented as 
1100_1001_0000_1111, while those of the elementary 
angles are tabulated in Table I.We design the micro-
rotation sequence generator keeping in mind: 1) For : 
The highest elementary 
angle would be used for the CORDIC iteration. 
Example—I: Let the rotation angle be radians be 

represented in 16-bit fixed point format as 
1011_0010_1011_1000. The is 15. As which is , the 
elementary angle used will correspond to . Also from 
Table I, it can be observed that the elementary angle 
required to realize this rotation angle is 0.25 radians 
with shift-index . 2) For : The elementary angle would 
be used for the CORDIC iteration, where is given by 
(11). Example—II: Let the rotation angle be radians be 
represented in 16-bit fixed point format as 
0010_1000_0011_0111. The is 13. As which is the 
elementary angle used will correspond to . Also from 
Table I, it can be observed that the elementary angle 
required to realize this rotation angle is 0.125 radians 
with shift-index . The pseudo-code for generating the 
micro-rotation sequence is given by algorithm-1 for 
.With slight modifications a similar algorithm can be 
designed for . 
 

 
 
 convergence (RoC) is an important aspect in 
the design of the CORDIC algorithm and determines 
the scope of the algorithm. To determine the RoC we 
first ensure the number of iterations to limit the latency 
of implementation of the algorithm, which determines 
the number of iterations used for realizing CORDIC 
rotations. 
 
A. Determination of Number of Iterations 
 The maximum angle that can be handled by 
the micro-rotation sequence generation block is fixed 
to . For realizing any angle of rotation lying in the 
range maximum of three iterations of the basic-shift are 
required; similarly, for basic-shift maximum of six 
iterations of basic-shift are required. Therefore, in the 
design of micro-rotation sequence generator for and for 
The rest iterations affect the accuracy, hence we 
simulate the design for various values of . The error is 
tabulated in Table II. With maximum of iterations, the 
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maximum percentage error in cosh and sinh values is 
0.1% and 0.5% respectively for basic-shift 2, and 
0.04% and 0.12% respectively for basic-shift 3. 
 
B. Extension of the RoC 
 The basic RoC for the proposed CORDIC is 
as the maximum angle handled by the micro-rotation 
sequence generator is . We can extend the RoC to by 
storing some known values of exponents and sine and 
cosine hyperbolic functions in a ROM, at the octant 
boundaries. The mathematical identities used for 
extending the RoC are (14); the values 

 

 
 
 The ROMrequirement of the proposed 
CORDIC processor is when implemented for exponent 
calculations, while it is when implemented for 
computing the hyperbolic functions. The RoC can be 
manipulated to either by changing the values of the 
ROM. 

5. ERROR ANALYSIS 
 The error analysis of any CORDIC algorithm 
consists of two parts: (i) residue angle error, and (ii) 
error in the coordinate values. In previous sections, the 
combined effect of various approximations on 
coordinate values is discussed. In this section, we 
present the errors in coordinate due to residue angle 
error and rotation matrix approximation. 
 
A. Residual Angle Error 
 In the proposed methodology, desired angle of 
rotation is expressed as:  

 
 
 We identify the micro-rotations by using the 
bit-representation of the desired rotation angle. The 
residue angle error depends on the number of bits set in 
the radix-2 representation of the rotation angle, and 
varies for different rotation angles.  
 
 Therefore, we derive the worst-case angle 
error in the range of convergence . The maximum 
number of iterations are fixed for all rotation angles, 
i.e., eight(eleven) for basic-shift 2(3). When the input 
rotation angle has the MSB-nibble value 4’b1011, 
four(six) iterations are required for the basic-shift ; 
while, three(five) or less iterations are required in case 
of other MSB-nibble values. From second MSB-nibble 
onwards, irrespective of the basic-shift, each bit set to 
1’b1 in the radix-2 representation of the rotation angle 
would require one iteration; maximum four iterations 
are required if the second MSB nibble value is 
4’b1111. For basic-shift , the iteration count is eight, 
hence the worst-case error is . For basic-shift , iteration 
count is eleven, this allows one iteration for third 
MSB-nibble, therefore the worst-case error is . This 
worst-case residue angle error is specific to the rotation 
angle of 16’b1011_1111_1111_1111, while for other 
rotation angles the residue angle error would be less. In 
the proposed 16-bit fixed point representation scheme, 
16’b1011_1111_1111_1111 is 42.97 degrees; the 
worst-case residue angle error is 0.2229 degrees with 
basic-shift 2, and 0.1110 degrees with basic-shift 3. 
 
B. Coordinate Error: Effect of Residual Angle 
 The maximum angle deviation in the proposed 
scheme is 0.2229 degrees and 0.111 degrees for basic-
shift 2 and 3, respectively. In the worst case scenario, 
the final rotation realized will be radians or . In this 
case, the coordinates values computed are: 
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The error in the coordinate values is: 
 

 

 
Figure. 4. Bit-error-position plot for cosh and sinh 

values calculated using proposed algorithm. 
 
C. Coordinate Error: Effect of Rotation Matrix 
Approximation 
 In the proposed methodology using the 
rotation matrix of (9), the error in the coordinate values 
for one iteration is as: 

 
 
6. WAVEFORM GENERATION 
 In this section, we propose a new technique 
for generating arbitrary waveforms using the scale-free 
hyperbolic CORDIC processor. In the proposed design, 
the phase of hyperbolic DDS function generator is 
randomly modulated using a linear feedback shift 
register (LFSR). In the next subsection, we discuss the 
design of hyperbolic DDS based on the proposed 
CORDIC processor, following which the architecture 
of proposed AWG is described. The proposed DDS can 
be used to generate hyperbolic, exponential and other 
arbitrary waveforms. For generating 
sinusoidalwaveforms, the output of circular CORDIC 
processor replaces the hyperbolic CORDIC processor 
in the proposed DDS. 

A. Proposed Hyperbolic DDS 
 The block diagram of the proposed hyperbolic 
DDS is shown in Fig. 5. The proposed DDS consists of 
a counter, multiplication unit, a LUT and scale-free 
hyperbolic CORDIC processor. 
 

 
Figure. 5. Proposed hyperbolic DDS architecture. 

 

 
Figure. 6. Structure of pipelined stage of proposed 

scale-free hyperbolic CORDIC processor. 
 
 The counter output is used to generate a linear 
ramp signal which is used subsequently as the phase of 
the hyperbolic function, such that, the phase of 
hyperbolic function changes periodically from to With 
each increment of the counter, the phase is incremented 
by: 

 



Scale-Free Hyperbolic Cordic Processor and Its Application To Waveform Generation 
 

151 | P a g e  

The counter output ‘ ’, thus corresponds to the phase: 

 
 
 The hyperbolic CORDIC processor maps the 
phase to  The proposed scale-free hyperbolic CORDIC 
processor has eight (or eleven) identical pipelined 
stages for basic-shift 2 (or 3), where each stage 
performs a CORDIC iteration based on the proposed 
CORDIC algorithm. The structure of each stage is 
shown in Fig. 6. It consists of three computing blocks 
namely, (i) micro-rotation sequence generator, (ii) 
shift-value estimator, (iii) coordinate calculation unit. 
The combinatorial circuit for generating the micro-
rotation sequence is shown in Fig. 7. The coordinate 
calculation unit based on rotation matrix (12) is shown 
in Fig. 8. The shift values required for coordinate 
calculations are obtained from the circuit shown in Fig. 
9. The DDS generates the phase which varies linearly 
with the counter. The three Most-Significant-Bits 
(MSB) of the counter divide the entire coordinate space 
into octants as shown in Fig. 10. These three MSBs are 
used as the address of the 
 

 
Figure. 7. Micro-rotation sequence generation. 

 
Figure. 8. Coordinate calculation unit. 

 
 

Figure. 9. Shift value estimation. 
 
 LUT that stores the initial values for the 
CORDIC processor, while the rest of the bits are 
multiplied by to generate the  
 

 
Figure. 10. Distribution of over the coordinate 

space. 

 
Figure. 11. DDS generated cosh waveform. phase, 

which always lies between .  
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 The multiplication by is performed by a 
multiplier consisting of an optimized shift-add tree. 
The periodic cosh waveform generated by the proposed 
DDS architecture is shown in Fig. 11. Apart from 
hyperbolic waveforms, the proposed DDS architecture 
can be modified to generate exponential waveforms as 
well. To generate exponential-up/down waveform, the 
output in Fig. 5 is summation of -coordinate and -
coordinate outputs of the CORDIC processor. The 
exponential-up signal is generated using an up-counter, 
while for an exponential-down signal a down-counter 
is used. The periodic exponential-up signal generated 
using the proposed hyperbolic DDS architecture is 
shown in Fig. 12. 
 
B. Random Phase Modulated Waveform Generator 
Using the 
Proposed Hyperbolic DDS 
 The proposed DDS architecture can be 
modified to generate random phase modulated 
waveforms. To reduce the hardware cost, instead of 
replicating the DDS multiple times, we randomly 
modulate the phase of a single DDS for generating 
random modulated waveforms. The block diagram for 
the proposed design for random modulated waveform 
generation is shown in Fig. 13. A random number 
generated by LFSR is added with the counter of DDS 
to modulate its phase. The counter increments linearly 
from 0 to rollover count . Once the counter value 
exceeds , it is reset 

 
Figure. 12. DDS generated exponential-up 

waveform. 
 

 
Figure. 13. Proposed design for random modulated 

waveform generation. 

to zero. The counter output after ‘ ’ clock cycles is 
given by (21), where is the linear increments of the 
counter, such that: 

 
 The modulated phase is given by (22), where 
the adder ignores the carry generated by the addition of 
to restrict the modulated phase to . 
 

 
 
 Equation (22b) shows a linear relation 
between and . The threeMSBs of partition the whole 
coordinate space into octants, and follow the same 
pattern as counter inDDS, shown in Fig. 10. Therefore, 
the octants are identified by threeMSBs of . The rest of 
the bits of are multiplied by to generate the phase 
which always lies in the range . The initial values 
required to be stored in an LUT are given in Table V. 
The modulated phase lies in the range , so the output 
amplitude varies arbitrarily in the range [1, 11.59]. It 
can be 

Table V Initial values for realizing modulated 
waveforms 

 
 

 
Figure 14. Random modulated waveforms 

generated using proposed waveform generator.  
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 extended to [1, 267.74] by changing the range 
of the modulated phase to . By selecting the initial seed 
value of LFSR, rollover count and counter step, the 
proposed waveform generator can generate various 
kinds of modulated/arbitrary waveforms. Two 
examples of modulated waveforms are shown in Fig. 
14. 
 
C. Fourier Analysis of Proposed Waveform Generator 
 The proposed AWG generates samples of 
random modulated waveforms whose phase is defined 
by (22b). The signal generated by the waveform 
generator can now be defined as: 

 
 
 The waveforms generated by the proposed 
AWG are periodic in nature. The period of the arbitrary 
waveform is a function of counter period and LFSR 
period (24). The depends on the polynomial used to 
implement the LFSR. The coefficients of the 
polynomial of the LFSR belong to binary Galois field 
GF(2). The polynomial which we have used to 
implement LFSR is . According to the Appendix C, is 
given by: 

 
 
 The Discrete Fourier transform (DFT) of the 
proposed waveform generator signal (23b) is given by: 
 

 
 
 From (25a),we observe the frequency 
components of the generated waveforms depend on . 
The modulated depends on counter step and the LFSR 
value. 
 
 
 

7. FPGA IMPLEMENTATION RESULTS AND 
COMPLEXITY ISSUES 
 The proposed AWGis coded in Verilog and 
synthesized using Xilinx ISE 9.2i to bemapped in to 
Xilinx Spartan 2E (xc2s200e- 6pq208) device. For a 
16-bit output width, the proposed AWG implemented 
using basic-shift 2, in the proposed hyperbolic 
CORDIC processor, consumes 1076 slices and 2016 4-
input LUTs. It achieves a maximum frequency of 
56.383 MHz, with a gate count of 17580. The proposed 
AWG designed with basicshift 3 on the same device 
provides maximum operating frequency of 55.661 
MHz and consumes 1340 slices and 2499.  4-input 
LUTs with 22294 gate count. 
 
A. Complexity Consideration: Proposed Hyperbolic 
CORDIC Processor 
 We compare the proposed hyperbolic 
CORDIC processor with the Xilinx CORDIC Core v 
3.0 [32] and expanded CORDIC [29] in terms of area 
and time complexities in Table VI. The implementation 
of Xilinx Core [32] is based on conventional CORDIC 
algorithm, designed for the same bit-accuracy as that 
obtained by the proposed CORDIC algorithm. The 
Xilinx Core is optimized for implementing hyperbolic 
functions only. The elementary rotation in hyperbolic 
coordinates do not converge in conventional CORDIC, 
and convergence is achieved only by repeating certain 
micro-rotations [33]; for 16-bit implementation, 
iterations and 13 need repetition. Hence, the total 
iteration count is 18 with the bit-error-position of 
minimum 8-10-bits [34]. In [29], the RoC of 
conventional hyperbolic CORDIC processor is 
expanded 
 
Table VI complexity comparison: proposed hyperbolic 
cordic processor With xilinx cordic core and expanded 

hyperbolic cordic [29] 
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 BEL is Basic Element of Logic, includes 
MUXes and LUTs required by the design. Typically 
BEL corresponds 1:1 with an instance in the 
logical/structural view of the design. The BEL 
consumption of the circuit remains unchanged with the 
change in FPGA device. Therefore, it is better measure 
to compare area than slices, as number of slices change 
with change in FPGA device. using additional 
iterations. For RoC of , it requires two additional 
iterations apart from usual conventional CORDIC 
iterations, which increases the total iteration count to 
20. Hence, the latency of the CORDIC algorithm of 
[29] is significantly higher than the proposed CORDIC 
algorithm which involves only 8 iterations. The 
proposed CORDIC can also work with the latency of 8 
iterations for the RoC of . This RoC can be realized by 
using a small circuit comprising of a complementor 
and a 2 1 multiplexer with the pre-processing unit 
(shown in Fig. 15). To achieve this RoC, the algorithm 
of [29] would require 22 iterations. 
 
B. Complexity Considerations of Waveform Generator 
 We compare the area and time complexities of 
the proposed AWG with existing CORDIC-based 
AWGs in Table VII and Table VIII, respectively. The 
proposed AWG on an average requires 36.5% less area 
as compared to existing CORDIC-based AWGs. While 
it has approximately 5.7% less throughput than Xilinx-
CORDIC Core based AWG, it has 7.3% higher 
throughput than scaling-free CORDIC [22]-based 
AWG. The 
 

  
Figure. 15. Pre-processor unit to extend the RoC of 

the proposed scale-free hyperbolic CORDIC. 
 

Table VII Area Comparison: Proposed  Waveform 
Generator With Other CORDIC Based AWGS 

 

 
 
 The conventional CORDIC gate-counts are 
calculated using Xilinx CORDIC-IP. The scale-free 
and E.S.F. CORDIC architectures consume 36% and 
37% respectviely less area than conventional CORDIC. 
Therefore, their gate-counts are 36% and 37% less than 
the conventional CORDIC gate-count. The total gate-
count of the CORDIC-based AWGs is higher as it 
includes DDS implementation circuitry like counter, 
phase angle generator.  
 
Table VIII Time Comparison: Proposed Waveform 

Generator With Other Cordic Based Awgs 
 

 
 
 Maximum operating frequency as obtained on 
Xilinx Spartan 2E (xc2s200e-6pq208) device. latency 
of the proposed AWG using is lowest as it requires 
only 8 pipeline stages. 
 
8. CONCLUSION 
 A scale-free hyperbolic CORDIC algorithm is 
proposed and used for arbitrary waveform generation. 
The key features of the proposed algorithm are that it is 
completely scaling-free, provides greater RoC, and 
reduces the number of iterations. A generalized micro-
rotation scheme based on most-significant-1 detector 
with single direction micro-rotations is used to 
eliminate the redundant CORDIC iterations.Using the 
proposed CORDIC algorithm, we have suggested a low 
complexity waveform generator using a single DDS by 
random phase modulation. The proposed AWG 
requires on an average 36% less area, and less latency 
compared with existing CORDIC-based designs with 
nearly the same throughput rate. 
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APPENDIX A 
Lemma: The order of approximation of Taylor series 
expansion of hyperbolic sine and cosine functions 
determines the highest elementary angle to be used for 
CORDIC iterations. Proof: For and approximation 
order the highest term neglected in sinh series and cosh 
series are defined as: 

 
 
 The values of iteration indices used in 
CORDIC operations are chosen such that, the terms 
neglected in the Taylor series get a right shift greater 
than the word-length ( -bits). This causes them to be 
zero and their role in calculating values is obviated. 
The lowest degree term neglected in the series decides 
the basic-shift value imposing a restriction on the 
smallest elementary angle used. Hence, decides the 
basic-shift and lays the foundation for the first 
CORDIC iteration. The lowest degree term neglected 
for approximation order is given by . 
 

 
Consequently, for to be zero for a word-length of -bits, 
the 
condition is: 

 
APPENDIX B 
 Lemma: Reiteration of elementary angle is 
applicable only for the basic-shift; all other values of 
shifts are non-repetitive. Proof: Let the start shift be 
represented as ‘ ’ and elementary angles as , ‘ ’ micro-
rotations of elementary angle , are represented as: 

 
 The minimum number of iterations required 
for realizing,  micro-rotations of elementary angle are: 
 

 
APPENDIX C 
 Lemma: Every polynomial with coefficients in 
GF(2) having divides for some . The smallest for which 

this is true is called the period of  Proof: The proof is 
out of scope of the paper. 
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